Continuity of the radius of convergence of differential equations on p-adic analytic curves

نویسنده

  • Francesco Baldassarri
چکیده

1 The structure of smooth compact k-analytic curves 8 1.1 Disks and annuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Semistable formal models of affinoids . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Formal coverings and formal models . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 Semistable partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5 Minimum semistable model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.6 Metrized piecewise RS-linear graphs . . . . . . . . . . . . . . . . . . . . . . . 17 1.7 Retractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.8 Change of base field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.9 Closed annuli of higher genus . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity of the radius of convergence of p-adic differential equations on Berkovich analytic spaces

4 The Dwork-Robba theorem and the upper semicontinuity of ξ 7→ R(ξ,Σ) 9 4.1 The global growth estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 The generalized Dwork-Robba theorem . . . . . . . . . . . . . . . . . . . . . . 10 4.3 Upper semicontinuity of ξ 7→ R(ξ,Σ) . . . . . . . . . . . . . . . . . . . . . . . 13 4.4 Continuity of ξ 7→ R(ξ,Σ) at maximal points (Dwork’s tra...

متن کامل

Introduction to p - adic q - difference equations ( weak Frobenius structure and transfer theorems )

Inspired by the theory of p-adic differential equations, this paper introduces an analogous theory for q-difference equations over a local field, when |q| = 1. We define some basic concepts, for instance the generic radius of convergence, introduce technical tools, such as a twisted Taylor formula for analytic functions, and prove some fundamental statements, such as an effective bound theorem,...

متن کامل

The Radius of Convergence Function for First Order Differential Equations

We present an algorithm computing, for any first order differential equation L over the affine line and any (Berkovich) point t of this affine line, the p-adic radius of convergence RL(t) of the solutions of L near t. We do explicit computations for the equation (0.1) L(f) def = xf ′ − π(px + ax)f = 0 (πp−1 = −p). where a lies in some valued extension of Qp. For a = −1 and t = 0, a solution of ...

متن کامل

Some p-adic differential equations

We investigate various properties of p-adic differential equations which have as a solution an analytic function of the form Fk(x) = ∑ n≥0 n!Pk(n)x , where Pk(n) = n +Ck−1n k−1+· · ·+C0 is a polynomial in n with Ci ∈ Z (in a more general case Ci ∈ Q or Ci ∈ Cp) , and the region of convergence is | x |p< p 1 p−1 . For some special classes of Pk(n), as well as for the general case, the existence ...

متن کامل

A p-adic local monodromy theorem

We prove a local monodromy theorem for p-adic differential equations on an annulus, answering a question of R. Crew. Specifically, suppose given a finite free module over the Robba ring (the ring of germs of functions analytic on some open p-adic annulus with outer radius 1) with a connection and a compatible Frobenius structure. We prove that the module admits a basis over a finite extension o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009